

Training	A1.Sys	1 - Introd	uction to Systems Engin	eering
Keyfacts				
	Du	iration	3 days	
	Lai	nguage	English or German	
	Se	tting	On-site or remote	
Target Group	Engineers v	vho are working	in an interdisciplinary environment	

Training Goals

The ultimate goal of this training is to learn how to master the challenges of interdisciplinary development. It is designed as entrypoint and trailsign into the topic of "Systems Engineering" and pursues the following goals:

#1 - Problem Understanding

Participants are able to understand the different types of systems and their present and future challenges as basis for deriving individual solution strategies.

#2 - Introduction to Systems Engineering

Participants have an understanding about the the ideas and concepts of "Systems Engineering" as interdisciplinary engineering discipline. They know the state of the art and are able to identify relevant topics and strategies for interdisciplinary development

#3 - Fundamental Systems Engineering Concepts

Participants understand the fundamental engineering concepts required for a Systems Engineering approach. A particular focus is put on Requirements Engineering, Architecture Development,

Component Design, Integration, Verification, Validation (IVV), and modern engineering approaches

#4 - Quality, Dependability, and differences between the disciplines

Participants understand the different challenges introduced by different discipines. A particular focus is put on the understanding of "Quality" and "Dependability" in context of Cyber-Physical Systems together with the corresponding "Quality Assurance" strategies

#5 - The Role of Organizations and invididuals in interdisciplinary development Participants understand the mutual influence of organizations and architecture. Further, they will be able to reflect on their individual role in context of interdisciplinary development

Training Content	Introduction to Systems Engineering Characteristics of Cyber-Physical Systems and System-of-Systems Systems Engineering as interdisciplinary discipline Technical and organizational aspects of Systems Engineering Requirements Engineering			
	 Understanding Requirements Engineering as engineering discipline Fundamental concepts and methods of Requirements Engineering Quality Characteristics and Dependability 			
	Architecture Development			
	Fundamental concepts of Architecture			
	Architecture Description, Viewpoints and Model Kinds			
	 Architecture Develpment Methods (Twin-Peaks, Zig-Zag Pattern, FAS) Model Based Systems Engineering (MBSE) 			
	Making good Architectures			
	• Design for X			
	Component Designin an interdisciplinary environment			
	• Modern Development Logics (e.g., Agile, Continuous-X, DevOps,)			
	Integration, Verification, and Validation (IVV) Virtual and physical integration 			
	Constructive, Analytic, and Organizational Quality Assurance			

Training Content	 Platform und Variant-Management Fundamental Concepts for Platform and Variant-Management Feature Trees und Variable Architekturen The Role of Organizations, Leaders, and Experts The Importance of Organizations: Conway's Law The Role of Leaders The Role of Experts
Learning Methods and Didactics	Combination of theory inputs, discussions, examples and exercises to deepen the learning effect

Your Benefit

One of the main challenges in interdisciplinary engineering is the identification of the "unknown unknowns". This training, designed as introduction and road sign. It provides a structured overview on the fundamental concepts of Systems Engineering. As such, it helps identifying blind spots and shows methods how to overcome particular challenges in interdisciplinary engineering.

Your Trainer

FH-Prof. Dr. Christian Neureiter neureiter@successfactory.cc

Christian is Professor at the School of Information Technology and Digitalisation at Salzburg University of Applied Sciences. As head of the "Center for Dependable Systems Engineering" he is an expert in this field and has profound knowledge on the matter.

Asides his academic role, Christian has 10+ years of experience as consultant and trainer

at the Successfactory Consulting group with a particular focus on Leadership, Software, and Systems Engineering related topics.